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Terebinth (Pistacia atlantica L.) is an ancient and 
long life tree with about 5 m height. Ripening time of 
the terebnith fruit is May and June. Terebinth grows 
in many areas of the Iranian plateau. Three Iranian 
sub-species of terebinth fruit are Mutika, Kurdika and 
Kabulika. Each of species grows in different regions 

of the country. Terebinth fruit is small, spheroid and 
dark green. It is similar to pistachio but much smaller. 
Terebinth fruit is used to fl avour buttermilk and animal 
oils and also used to make pickles [Amiri Chayjan and 
Kaveh 2013]. Moisture content of terebnith fruit in 
harvesting time is about 1.16 (d.b.) causing microbial 
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ABSTRACT

Background. Drying of terebinth fruit was conducted to provide microbiological stability, reduce product 
deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because terebinth 
fruit is susceptible to heat, the selection of a suitable drying technology is a challenging task. Artifi cial neural 
networks (ANNs) are used as a nonlinear mapping structures for modelling and prediction of some physical 
and drying properties of terebinth fruit.
Material and methods. Drying characteristics of terebinth fruit with an initial moisture content of 1.16 
(d.b.) was studied in an infrared fl uidized bed dryer. Different levels of air temperatures (40, 55 and 70°C), air 
velocities (0.93, 1.76 and 2.6 m/s) and infrared (IR) radiation powers (500, 1000 and 1500 W) were applied. 
In the present study, the application of Artifi cial Neural Network (ANN) for predicting the drying moisture 
diffusivity, energy consumption, shrinkage, drying rate and moisture ratio (output parameter for ANN model-
ling) was investigated. Air temperature, air velocity, IR radiation and drying time were considered as input 
parameters.
Results. The results revealed that to predict drying rate and moisture ratio a network with the TANSIG-
-LOGSIG-TANSIG transfer function and Levenberg-Marquardt (LM) training algorithm made the most ac-
curate predictions for the terebinth fruit drying. The best results for ANN at predications were R2 = 0.9678 for 
drying rate, R2 = 0.9945 for moisture ratio, R2 = 0.9857 for moisture diffusivity and R2 = 0.9893 for energy 
consumption.
Conclusion. Results indicated that artifi cial neural network can be used as an alternative approach for 
modelling and predicting of terebinth fruit drying parameters with high correlation. Also ANN can be used 
in optimization of the process.
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spoilage soon after harvest. Terebinth fruit have medi-
cal applications such as: reducing blood fat, elevating 
and strengthening the liver and spleen.

Drying is an important process for handling raw 
materials in order to prolong its shelf life, as the dry-
ing process inhibits enzymatic degradation and limits 
microbial growth [Ahrne et al. 2007]. Infrared radia-
tion has been successfully applied in the drying of 
foods and agricultural products [Siriamornpun et al. 
2012], since the main components of these products 
have their principal absorption bands in the infrared 
radiation region [Meeso 2008]. Unlike hot air drying, 
infrared radiation generates internal heating through 
molecular vibration of the material, bringing about ex-
cited vibration when molecules absorb the radiation 
of certain wavelengths and energy [Siriamornpun et 
al. 2012]. Therefore, the dried food absorbs the elec-
tromagnetic wave energy directly with reduced energy 
loss. Many workers studied IR drying as a potential 
method to obtain high quality dried fruits, vegetables 
and grains [Ruiz Celma et al. 2009, Khir et al. 2011, 
Dondee et al. 2011, Ponkham et al. 2012].

In food processing, nonlinear models are more pop-
ular due to nonlinear behaviour and variability of food-
stuffs. Moreover, product processing involves many 
fl uctuations in process conditions greatly depend on 
the skill and experience of operators. Therefore, artifi -
cial neural network (ANN) has gained momentum for 
process modelling and control. ANN is recognised as a 
good tool for static modelling because it is capable of 
handling complex systems with nonlinearities and in-
teractions between decision variables, has an ability to 
learn the solution of problems from a set of experimen-
tal data and does not require physical parameters of 
models. ANN models were constructed by many inter-
connecting nonlinear computational elements, known 
as neurons or nodes, operating in parallel and arrang-
ing in patterns similar to biological networks [Mohebbi 
et al. 2011, Amiri Chayjan et al. 2012 a].

Quantifi cation of relationships between inputs and 
outputs of a complex process such as infrared drying 
operation using mathematical, statistical and analyti-
cal methods is much more diffi cult. It is worth noting 
that ANNs provide the potential to identify and clas-
sify network activity based on limited, incomplete, 
noisy, dynamic and nonlinear data sources [Aghbashlo 
et al. 2012].

Several studies have been carried out to identify 
complex and nonlinear drying systems and process 
behaviours using ANNs [Erenturk and Erenturk 2007, 
Chegini et al. 2008, Omid et al. 2009, Khoshhal et al. 
2010, Aghbashlo et al. 2011, Niamnuy et al. 2012].

No study has been reported about effective mois-
ture diffusivity, energy consumption, shrinkage, dry-
ing rate and moisture ratio of terebinth fruit by ANN 
method. The main goals of this study were artifi cial 
neural network modelling effective moisture diffusivi-
ty, specifi c energy consumption, shrinkage, drying rate 
and moisture ratio at infrared drying of terebinth fruit.

MATERIAL AND METHODS

Sample preparation
Fresh terebinth fruit supplied from Sardasht forests, 

west Azerbaijan, Iran. To carry out the drying tests the 
material was kept at refrigerator temperature 3 ±1°C. 
Initial moisture content of terebinth fruit was deter-
mined by oven method, at a temperature of 70 ±1°C 
for 24 hours [Doymaz 2005]. The initial moisture con-
tent of the seed was 1.16 (%d.b.). During two weeks 
after storage, all drying experiments were conducted.

Drying equipment
Three experimental points of drying were selected 

using fl uidization curve (Fig. 1). At fi rst, pressure drop 
of terebinth fruit was determined at different air fl ow 
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Fig. 1. Fluidization curve of terebinth fruit and selected 
point for modelling: A – fi x bed (0.93 m/s), B – semi fl uid 
bed (1.76 m/s), C – fl uid bed (2.6 m/s)
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velocities. Fan speed was gradually increased using 
an inverter (Vincker VSD2) and parameters of air veloc-
ity and pressure drop were recorded using a multifunc-
tion measurement device (Standard ST-8897, made in 
China). It consist a vane type digital anemometer with 
±0.1 m/s accuracy and a differential manometer with 
±0.1 Pa accuracy. Drying experiments were conducted 
using a laboratory infrared-fl uidized bed dryer (Fig. 2). 

Maximum static pressure drop (point B in Fig-
ure 1) in fl uidization curve of terebinth fruit is known 
as minimum fl uidization or semi fl uid bed. An experi-
mental point in fi xed bed domain was selected with 
air velocity about 0.93 m/s (point A in Figure 1), also 
experimental point C with air velocity about 2.6 m/s 

was selected as fl uid bed condition. A laboratory fl uid 
bed dryer was used to perform the drying experiments 
(Fig. 2). Three bed conditions (fi x bed at 0.93 m/s, 
semi fl uid bed at 1.76 m/s and fl uid bed at 2.6 m/s) 
and three air temperatures of 40, 55, and 70°C were 
applied in the experiments. Also, three infrared pow-
er of 500, 1000 and 1500 W were used in the ex-
periments. About 30 g of terebinth fruit after weigh-
ing were uniformly spread in a perforated plate and 
kept inside the dryer. Drying time was considered 
as the time required reducing the moisture content 

of the product to 0.2 (d.b.). Drying experiments were 
conducted in three replications. 

Theoretical principle
During the drying period, weight measurement has 

been made once every half an hour. At the end of two 
consecutive attempts, absolute dry weight has been 
considered to be achieved with the condition that the 
weight changed less than 1%. Initial moisture contents 
(dry basis) of the terebinth fruit have been calculated 
with the following equation [Menlik et al. 2010]:

 
a

ai
db M

MMMC  (1)

where MCdb is the moisture contents (d.b.), Ma is the 
dry weight (kg), Mi is the wet weight (kg).

Drying rate 
Drying rate can be defi ned as the moisture content 

variation with time and calculated by using the follow-
ing equation [Xiao et al. 2010]:

 
dt
MMDR tdtt  (2)

Fig. 2. Schematic diagram of laboratory scale infrared-fl uidized bed dryer: 1 – dry-
ing chamber, 2 – infrared lamp, 3 – thermocouple, 4 – air velocity sensor, 5 – fan 
and electrical motor, 6 – electrical heater, 7 – inverter and thermostat, 8 – precision 
balance, 9 – computer, 10 – thermometer, 11 – psychrometer, 12 – chassis
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where Mt and Mt+dt are the moisture content at drying 
time of t and t + dt, respectively.

Eff ective moisture diff usivity
Second low of Fick in diffusion with sphere ge-

ometry is used for computing of effective moisture 
diffusivity. The seed shrinkage was assumed after 
drying process as negligible and distribution of initial 
moisture as uniform. Fick’s equation for computing 
effective moisture diffusivity of terebinth is as follows 
[Nuthong et al. 2011]:

 
1

2

22
eff

22 exp16

ney

ex

R
tnD

nMM
MMMR  (3)

where MR is the moisture ratio, Mx is the moisture 
content at any time (%d.b.), Me is the equilibrium 
moisture content (%d.b.), My is the initial moisture 
content (%d.b.), n is the number of terms taken into 
consideration, t is the drying time (s), Deff is the effec-
tive moisture diffusivity (m2/s) and R is the radius of 
terebinth (m). 

The equilibrium moisture content (Me) is negligi-
ble related to the other moisture contents. Taking the 
natural logarithm of both sides of Eq. (2), the follow-
ing equation is obtained [Das et al. 2009]:
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R
tD

M
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The effective diffusivity (Deff), was determined 

from the slope of the 
ey

ex

MM
MMln  versus time plot.

Specifi c energy consumption
Specifi c energy consumption (SE) for terebinth 

drying was obtained using the following thermody-
namic equation [Amiri Chayjan et al. 2012 b]:

 
hv

amin
apvpa Vm

TThCCQtSE )(  (5)

where SE is specifi c energy consumption (kJ/kg), CPv 
and CPa are specifi c heat capacity of vapor and air, re-
spectively, (1004.16 and 1828.8 J/kg·°C), Q is the in-
let air to drying chamber (m3/min), t is the total drying 
time (min), ha is absolute air humidity (kgvapor/kgdry air), 

Tin and Tam are inlet air to drying chamber and ambient 
air temperatures, respectively, (°C), mv is mass of re-
moval water (kg) and Vh is specifi c air volume (m3/kg).

Shrinkage
Based on measurements of the volume of material, 

shrinkage was calculated using the following equation 
[Nowacka et al. 2012]:

 1001
0

1

V
VSa  (6)

where Sa is the shrinkage (%), V1 is the fi nal volume of 
the dried material (m3) and V0 is the volume of before 
drying (m3).

Artifi cial neural networks modelling
The used neural network in this study is shown in 

Figure 3. A multilayer perceptron (MLP) neural net-
work with different hidden layers (one and two) was 
trained and tested. MLP is a layered feed forward back 
propagation (FFBP) and cascade forward back propa-
gation (CFBP) network typically trained with static 
back propagation. Its main advantage is easy use and 
approximation of any input/output parameters. Among 
the developed networks with different hidden layers, 
one hidden layer MLP neural network has presented 
the best results. Therefore, it was determined that one 
hidden layer ANN with appropriate error minimiza-
tion algorithms and transfer function and with a suf-
fi cient number of hidden neurons and training epochs 
was capable of approximating exegetic parameters of 
terebinth fruit drying process. 

Input

Layer 1
Layer 2

Output

IR 
radiation

Air 
velocity

Temperature

Drying 
rate

Moisture 
ratio

Drying 
time

Fig. 3. Schematic structure of the MLP ANN
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The parameters of air temperature, air velocity and 
IR radiation were used as the inputs, whereas the three 
parameters of energy consumption, moisture diffusiv-
ity and shrinkage were the outputs. Also in another 
ANN setup modelling, the coeffi cients of air tempera-
ture, air velocity, IR radiation and drying time were 
used as the inputs, whereas the two parameters drying 
rate and moisture ratio were the outputs. The neuron 
number in the fi rst hidden layer varied from 2 to 10. 
Also, the number of neurons in the second hidden lay-
er was varied from 2 to 10. Input variable levels and 
boundaries are presented in (Tables 1 and 2).

As shown in Figure 3, this type of ANN is a super-
vised network because it requires a desired output in 
order to learn. The goal of MLP ANN is to establish 
a model that accurately maps the input/output relation-
ships using experimental data so that the model can 
then be used to produce the output when the desired 
output is unseen. The MLP ANN learns using a back 
propagation algorithm i.e., the input data is repeatedly 

presented to the ANN and the error is calculated for 
each presentation by comparing the output of the neu-
ral network with the desired output. Then, the com-
puted error is fed back or back propagated to the ANN 
to adjust the weights [Jha 2007].

The effect of various error minimization algo-
rithms including Bayesian regulation (BR) and Le-
venberg-Marquardt (LM) on ANN performance were 
investigated. Different transfer functions including 
hyperbolic tangent sigmoid (tansig), logarithmic sig-
moid (logsig), linear (purelin) transfer functions were 
utilized for determination of neuron output. After us-
ing appropriate learning algorithm and transfer func-
tion, the effect of neuron number and training epochs 
were investigated on ANN performance. To develop 
a statistically model, networks were trained three 
times and the best values were recorded for each pa-
rameter [Aghbashlo et al. 2012]. Data analysis was 
accomplished using neural network toolbox (ver. 5) 
of Matlab software.

Three transfer functions were employed to achieve 
the optimized network structure [Demuth et al. 2007]:

Yj = Xj (PURELIN) (7)

1))2exp(1(
2

j
j X
Y  (TANSIG) (8)

)exp(1
1

j
j X
Y  (LOGSIG) (9)

where Xj is calculated as follow:

 
m

i
jiijj bYWX

1

 (10)

where m is the number of output layer neurons, Wij is 
the weight of between i-th and j-th layers, Yi is the j-th 
output neuron, Xj is the j-th input neuron, bj is the bias 
of j-th neuron for FFNN and CFNN networks.

Selection of optimal ANN
About 75% of the experimental data were sepa-

rated for network training to fi nd suitable structure. 
The mean absolute error (MAE), standard devia-
tion mean absolute error (SDMAE), mean square error 
(MSE) and coeffi cient of determination (R2) were used 
to compare the performance of different ANN models 
and were calculated as follow [Madadlou et al. 2009]:

Table 1. Input parameters for artifi cial neural networks and 
their boundaries for prediction of effective moisture diffu-
sivity, specifi c energy consumption and shrinkage of ter-
ebinth fruit

Parameters Maximum Minimum Number of 
levels 

Air temperature, °C 70 40 3

Air velocity, m/s 2.60 0.93 3

IR radiation, W 1500 500 3

Table 2. Input parameters for artifi cial neural networks and 
their boundaries for prediction of drying rate and moisture 
ratio of terebinth fruit

Parameters Maximum Minimum Number of 
levels 

Air temperature, °C 70 40 3

Air velocity, m/s 2.60 0.93 3

IR radiation, W 1500 500 3

Drying time, min 3 650 –



Kaveh M., Chayjan R.A., 2014. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using 
Artifi cial Neural Networks. Acta Sci. Pol., Technol. Aliment. 13(1), 65-78.

70 www.food.actapol.net/

 
m

p

q

i
ipip TS

mq
MSE

1 1

2)(1  (11)

 

m

k

n

k
k

k

m

k
kk

n

S
S

TS
R

1

1

12 1  (12)

 
m

k k

kk

T
TS

n
MAE

1

100  (13)

 
1

1
MAE n

T
TS

T
TS

SD

n

k k

kk

k

kk

 (14)

where Sip is the network output in i-th neuron and p-th 
pattern, Tip is the target output at i-th neuron and p-th 
pattern, q is the number of output neurons, m is the 
number of training patterns, Sk is the network output 
for k-th pattern, Tk is the target output for k-th pattern, 
n is the number of training patterns. To increase pro-
cessing velocity and accuracy of network, input and 
output data were normalized at domain of [0, 1].

RESULTS AND DISCUSSION

Drying rate
Figure 4 showed that the drying rate versus drying 

time of the terebinth samples at drying temperatures 40, 
55 and 70°C and IR radiation 500, 1000 and 1500 W. 
After an initial period of sample heating, the drying 
rate reaches its maximum value, and then the drying 
product continued at the falling rate period. The mass 
transfer process takes place initially at the surface of 
the samples, and continues relevance at subsequent 
stages. The moisture diffusion becomes the most im-
portant factor. However, the three different drying 
periods observed during the experiment performed 
at 70°C, 2.6 m/s and 1500 W, are an exception to such 
tendency: an initial heating period (for approximately 
180 s) was followed by a constant rate period (up to 
2100 s), and fi nally by the falling rate period. These 
experimental results are similar to some others pub-
lished in the literature, relating to drying experiments 

concerning vegetables and agricultural products; 
for instance grape [Ruiz Celma et al. 2009], pomegran-
ate [Mundada et al. 2010], barley [Markowski et al. 
2010] and banana [Thuwapanichayanan et al. 2011].

Eff ective moisture diff usivity
Table 3 shows the changes of effective moisture 

diffusivity with IR radiation, air velocity and air tem-
peratures. The higher drying temperature and IR ra-
diation can accelerate the water molecules present in 
the banana to evaporate faster, thus providing a faster 
decrease of the material moisture content and the cor-
responding higher value of effective moisture diffu-
sivity. The results obtained have shown that the iso-
thermal condition was established immediately and 
maintained throughout drying. Therefore, with negli-
gible sample shrinkage and uniform initial moisture 
distribution as well as constant moisture diffusivity as-
sumptions, the mathematical solution of Fick’s second 
law for diffusion Eq. (4) was suitable for determin-
ing the Deff. The calculated values of Deff for terebinth 
drying were 6.2·10-11-7.3·10-10 m2/s. The values of Deff 
increased greatly with increasing temperature and IR 
radiation and were in the suitable general range of 
10-11-10-9 m2/s for biomass [Chen et al. 2012].

Specifi c energy consumption
The specifi c energy consumption (SE) for drying 

of terebinth fruit was calculated using Eq. (5). Table 3 
shows the computed values of SE for terebinth fruit. 
It was observed that for all bed conditions, the SE was 
decreased as drying air temperature was increased. In-
creasing air velocity cause intensive increase in SE. 
Maximum value of SE (7077.24 MJ/kg) obtained at fl u-
id bed condition with air velocity of 2.6 m/s, air tem-
perature of 40°C and IR radiation 500 W, while the 
minimum value of SE (1162.03 MJ/kg) calculated at fi x 
bed condition with air velocity of 0.93 m/s and air tem-
perature of 70°C and IR radiation 1500 W. Results indi-
cated that increasing in drying time affect SE inversely. 
In other words, lower temperature caused lower mass 
transfer from the fruit. As a result, drying time was in-
creased, so energy consumption was increased. With in-
creasing in IR radiation, the consumed heat was strong-
ly increased and SE was therefore decreased. Similar 
effects have been reported for corn [Amiri Chayjan 
et al. 2011] and tomato [Ruiz Celma et al. 2012].
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Shrinkage
Table 4 shows variations of the 

0

11
V
V

 
versus 

IR radiation at different air temperatures of 40, 55 
and 70°C. The results indicated that by increasing 
air temperature and IR radiation, the seed shrinkage 
was increased. Maximum shrinkage (23.21%) was 
calculated at air velocity of 2.6 m/s, air temperature 
of 70°C and IR radiation 1500 W, respectively. The 
lowest shrinkage value (16.43%) was achieved at air 
velocity of 0.93 m/s, air temperature of 40°C and IR 
radiation of 500 W. Accordingly with increasing air 
temperature, shrinkage was increased. The highest 
shrinkage value was calculated at the highest temper-
ature (70°C) level. Also the terebinth fruit shrinkage 
increased with increasing air velocity and IR radia-
tion. More shrinkage at higher temperatures and IR 
radiation is due to faster mass transfer, so the created 
free space causing tension in the terebinth tissue and 
therefore product becomes more wrinkled. Similar 
results have been obtained for spirulina [Dissa et al. 
2010], pineapple [Ponkham et al. 2012] and papaya 
[Kurozawa et al. 2012]. Shrinkage value of terebinth 
fruit under convective drying was predicted by the 
following linear equation:

Sa = 0.74ν + 0.12Tin + 0.001IR + 9.836 
 R2 = 0.9440 

(15)

where: v is the air velocity (m/s) and IR is the infrared 
radiation power (W). The effects of all three input pa-
rameters on shrinkage were signifi cant. But the effect 
of air velocity was more the other parameters. This 
is because of air velocity role in the start of drying 
process and increasing the cell stresses after surface 
evaporation. 

Table 3. Effective diffusivity values (m2/s) and energy consumption (kJ/mol) for drying of terebinth fruit

Temperature, °C 
– IR radiation, W

Fix bed (0.93 m/s) Semi fl uid bed (1.76 m/s) Fluid bed (2.6 m/s)

Deff
m2/s

SE
kJ/mol

Deff
m2/s

SE
kJ/mol

Deff
m2/s

SE
kJ/mol

40-500 6.2×10-11 2 455.57 6.9×10-11 4 074.43 6.4×10-11 7 077.04

55-500 1.8×10-10 2 025.69 1.7×10-10 3 916.73 1.9×10-10 5 205.12

70-500 4.0×10-10 1 395.15 5.0×10-10 2 434.70 4.2×10-10 3 867.25

40-1000 8.3×10-11 2 387.82 9.6×10-11 4 071.20 1.1×10-10 6 771.99

55-1000 2.2×10-10 1 749.14 2.5×10-10 3 335.43 2.5×10-10 4 957.02

70-1000 4.8×10-10 1 230.46 6.7×10-10 2 291.25 5.9×10-10 6 313.19

40-1500 1.1×10-10 2 328.38 1.3×10-10 3 954.85 1.6×10-10 6 516.52

55-1500 2.8×10-10 1 719.55 3.1×10-10 3 206.32 3.4×10-10 4 674.52

70-1500 6.2×10-10 1 162.03 7.2×10-10 2 206.95 7.3×10-10 3 427.45

Table 4. Shrinkage values (%) for drying of terebinth fruit

Temperature, °C 
– IR radiation, W

Fix bed 
(0.93 m/s)

Semi fl uid 
bed 

(1.76 m/s)

Fluid bed 
(2.6 m/s)

40-500 16.43 17.32 19.07

55-500 18.74 19.00 21.55

70-500 20.22 21.01 22.71

40-1000 17.39 17.79 19.07

55-1000 19.40 19.58 21.55

70-1000 20.70 21.89 22.71

40-1500 18.07 18.39 20.42

55-1500 19.90 20.05 22.33

70-1500 21.14 22.86 23.21
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Artifi cial Neural Networks modelling
Various feed-forward and cascade forward ANNs 

were trained using 50 patterns with back propagation 
algorithm for creating nonlinear mapping between 
input parameters (air velocity, air temperature, IR ra-
diation and drying time) and output parameters (effec-
tive moisture diffusivity, specifi c energy consumption, 
shrinkage, drying rate and moisture ratio). Optimal 
number of hidden neurons in hidden layers was de-
termined under 3-x-y-1 and 4-x-y-2 architectures. 
At the fi rst, the number of hidden neurons was cho-
sen equal to one-half the total number of inputs plus 
outputs. Then the number of nodes was increased and 
decreased by an increment of 3 in each step to improve 
the model performance.

Based on the MSE of the training and testing, it was 
found that compared to the 3-layer ANN models, al-
most 4-layer models produced better performance. 
With increasing of own hidden layer (with 3 neurons) 
to network, MSE of network training increased indi-
vidually, but with more increasing of the number of 
neurons, the training’s MSE of network decreased. 
This proved that increasing the number of hidden lay-
ers increased the modelling precision and reduced the 
prediction problem.

In feed forward back propagation (FFBP) net-
works, the hidden neurons number determines how 
well a dataset can be learned. Too many hidden neu-
rons will lead to memorize the dataset, and therefore 
it is not able to generalize the input/output relationship. 

Table 5. Best selected topologies including training algorithm, different layers and neurons for FFBP and CFBP for mois-
ture diffusivity of terebinth fruit

Network Training 
algorithm Threshold function

Number of 
layers 

and neurons
MSE R2 MAE SDMAE Epoch

FFBP LM TANSIG 3-6-3-1 0.00032 0.9857 1.64×10-11 1.15×10-11 11

TANSIG-PURELIN-PURELIN 3-3-4-1 0.00249 0.9691 6.56×10-11 5.13×10-11 11

BR TANSIG 3-5-2-1 0.00090 0.9783 1.83×10-11 1.67×10-11 8

TANSIG 3-5-3-1 0.00180 0.9739 3.44×10-11 1.77×10-11 10

CFBP BR TANSIG 3-5-3-1 0.00084 0.9809 1.66×10-11 1.48×10-11 14

TANSIG-LOGSIG-TANSIG 3-3-3-1 0.00071 0.9817 1.64×10-11 1.37×10-11 14

Table 6. Best selected topologies including training algorithm, different layers and neurons for FFBP and CFBP for en-
ergy consumption of terebinth fruit 

Network Training 
algorithm Threshold function

Number of 
layers 

and neurons
MSE R2 MAE SDMAE Epoch

FFBP LM TANSIG 3-6-4-1 0.00011 0.9893 90.66 84.66 12

TANSIG-LOGSIG-PURELIN 3-5-3-1 0.00348 0.9601 293.06 234.66 22

BR TANSIG-PURELIN-TANSIG 3-5-4-1 0.00016 0.9835 199.68 145.39 9

PURELIN-TANSIG-TANSIG 3-4-5-1 0.00018 0.9876 174.35 130.09 12

CFBP BR PURELIN-TANSIG-TANSIG 3-4-4-1 0.00148 0.9811 183.49 169.95 107

TANSIG-LOGSIG-TANSIG 3-5-4-1 0.00128 0.9815 154.02 137.71 127
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If the hidden neurons number used is not suffi cient, 
the network may generalize the relationship well but 
may not have enough power to generalize the patterns 
well with an acceptable precision.

Tables 5 to 8 shows the mean values of MSE, MAE 
value, and R2 of the fi nal ANN model to predict each of 
the moisture diffusivity, energy consumption, shrink-
age, drying rate and moisture ratio out-put parameters.

The best result for predication moisture dif-
fusivity belongs to FFBP network, 3-6-3-1 topol-
ogy and TANSIG threshold function with LM algo-
rithm in the fi rst strategy. This structure generated 
MSE = 0.00032, MAE = 1.64·10-11, R2 = 0.9857 and 

SDMAE = 1.15·10-11 converged in 11 epochs (Table 5). 
The best results for predication energy consumption 
at belonged FFBP network to 3-6-4-1 topology and 
TANSIG threshold function with LM algorithm in 
the fi rst strategy. This structure generated MSE = 
0.00011, MAE = 90.66, R2 = 0.9893 and SDMAE = 
84.66 converged in 12 epochs (Table 6). The best 
results for predication shrinkage belongs to FFBP 
network, 3-5-5-1 topology and TANSIG threshold 
function with LM algorithm in the fi rst strategy. This 
structure generated MSE = 0.00048, MAE = 0.206, 
R2 = 0.9804 and SDMAE = 0.0891 converged in 105 
epochs (Table 7).

Table 7. Best selected topologies including training algorithm, different layers and neurons for FFBP and CFBP 
for shrinkage of terebinth fruit

Network Training 
algorithm Threshold function

Number of 
layers 

and neurons
MSE R2 MAE SDMAE Epoch

FFBP LM PURELIN-TANSIG-TANSIG 3-3-4-1 0.00684 0.9525 0.306 0.233 16

TANSIG-PURELIN-PURELIN 3-5-5-1 0.00048 0.9804 0.206 0.089 8

BR TANSIG 3-5-3-1 0.00052 0.9709 0.248 0.123 11

TANSIG-PURELIN-TANSIG 3-4-4-1 0.00697 0.9552 0.276 0.201 11

CFBP BR TANSIG 3-5-5-1 0.00174 0.9702 0.256 0.144 52

PURELIN-TANSIG-TANSIG 3-4-3-1 0.00707 0.9470 0.309 0.277 9

Table 8. Best selected topologies including training algorithm, different layers and neurons for FFBP and CFBP for drying 
rate (DR) and moisture ratio (MR) of terebinth fruit

Network Training 
algorithm Threshold function

Number of 
layers 

and neurons
MSE R2 (DR) R2 (MR) MAE 

(DR)
MAE 
(MR) Epoch

FFBP LM LOGSIG-TANSIG-PURELIN 4-5-3-2 0.00039 0.9666 0.9921 0.0005 0.0152 39

TANSIG-LOGSIG-TANSIG 4-5-5-2 0.00002 0.9678 0.9945 0.0005 0.0136 121

BR LOGSIG-PURELIN-TANSIG 4-6-6-2 0.00075 0.9565 0.9889 0.0006 0.0211 72

TANSIG-TANSIG-PURELIN 4-3-3-2 0.00052 0.9528 0.9900 0.0006 0.0188 89

CFBP LM TANSIG-PURELIN-TANSIG 4-4-5-2 0.00158 0.9494 0.9871 0.0006 0.0210 31

TANSIG 4-4-4-2 0.00071 0.9515 0.9899 0.0006 0.0196 32

BR LOGSIG-TANSIG-PURELIN 4-5-5-2 0.00069 0.9627 0.9897 0.0005 0.0186 31

TANSIG-PURELIN-PURELIN 4-5-3-2 0.00014 0.9652 0.9945 0.0006 0.0148 151
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Figure 5 compares the predicted values with the 
desired output values on a plot of moisture diffusivity, 
energy consumption and shrinkage for kinetics analy-
sis of infrared-fl uidized bed drying of terebinth fruit 
using the optimal static ANN.

The best results for predication drying rate and 
moisture ratio belonged to FFBP network, 4-5-5-2 
topology and TANSIG-LOGSIG-TANSIG threshold 
function with LM algorithm in the fi rst strategy. This 
structure generated MSE = 0.00002, MAE = 0.0136, 
R2 = 0.9945 and SDMAE = 0.0118 for moisture ratio and 
MAE = 0.0005, R2 = 0.9678 and SDMAE = 0.0008 for 
drying rate, converged in 121 epochs (Table 8).

Performance of the selected ANNs to predict dry-
ing kinetics is shown in Table 8. The ability of selected 
ANN to predict moisture ratio was better than that for 
predicting drying rate, due to higher value of R2 for 
moisture ratio in Table 8.

Figure 6 compares the predicted values with the de-
sired output values on a plot of moisture ratio and dry-
ing rate for kinetics analyses is infrared fl uidized bed 
drying of terebinth fruit using the optimal static ANN.
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Fig. 5. Predicted values of (A) moisture diffusivity, (B) en-
ergy consumption and (C) shrinkage using artifi cial neural 
networks versus experimental values for testing data set
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Fig. 6. Predicted values of (A) moisture ratio and (B) 
drying rate using artifi cial neural networks versus experi-
mental values for testing data set
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These results imply that the designed ANN mod-
el was properly capable of learning the relationship 
between the input and output parameters. These re-
sults also indicated that a properly trained ANN was 
able to predict simultaneously more than one out-
put, unlike common models where one mathemati-
cal model was required for each output (Table 8). 
The optimized ANN model provided favourable re-
sults over the whole set of values for all the dependent 
variables.

This indicates the fact that the achieved ANN 
model can assuredly replace the mathematical models 
for infrared fl uidized bed dryer parameters prediction, 
since it takes acceptable performance using the experi-
mental data and automatically improves itself through 
learning. In addition, the optimized ANN model has 
the ability to relearn and improve its performance if 
new dataset is presented. This provides the gradual 
possibility of establishment of a unique powerful 
model which can be of paramount importance in auto-
matic control system.

Figures 5 and 6 showed the testing data points are 
banded around a 45° straight line, demonstrating the 
suitability of the selected static multilayer feed for-
ward ANNs in predicting the kinetics analysis of fl u-
idized bed drying of terebinth fruit. Process simula-
tion and its control in drying technology has always 
been quite challenging, fi led due to the time-varying 
characteristics and non-linearity of drying phenom-
ena. Therefore, the ANN approach is an alternative 
to usual methods, which can give a higher estimation 
precision and make it possible to operate in a broader 
range.

In mathematical modelling, only one empirical 
model is required to predict one output, whereas an 
optimized MLP ANN uses a set of weights for all dry-
ing parameters and is able to model simultaneously 
all outputs together. Empirical models are physically 
explainable, but interpretation of the MLP ANN struc-
ture is diffi cult. Because ANN has ‘‘black box’’ nature 
which does not give real information about weighting 
factors of the components to the operator, although 
various model comparisons and sensitivity tests may 
provide information about their physical meanings 
[Omid et al. 2009]. 

CONCLUSIONS

In this study, supervised ANN models were devel-
oped to determine the moisture diffusivity, shrinkage, 
drying rate and moisture ratio performance of tere-
binth drying process. A multilayer feed forward neural 
network (FFNN) and casced forward neural network 
(CFNN) trained by back propagation algorithms was 
developed to predict the moisture diffusivity, shrink-
age, drying rate and moisture ratio based on the three 
and four variables. It was concluded that the MLP 
ANN approach for moisture diffusivity, shrinkage, 
drying rate and moisture ratio prediction of terebinth 
drying process is capable of yielding good results and 
can be considered as an attractive alternative to tradi-
tional regression models and other related statistical 
approaches. This approach was able to determine the 
nonlinear relationship between input and output data 
supplied to the system during the training phase and 
on that basis, makes a prediction of what the moisture 
diffusivity, shrinkage, drying rate and moisture ratio 
performance would be in any dryer operational condi-
tion. The fi nal selected ANN model was able to pre-
dict simultaneously the two output parameters (mois-
ture ratio and drying rate) with MSE = 0.00002, R2 = 
0.9678 and 0.9945, and MAE = 0.0005 and 0.0136, 
respectively.
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