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ABSTRACT

Background. Artificial neural networks (ANN) are a common mathematical tool widely used in many re-
search fields. Since they are applicable to non-linear relationships and do not require preliminary assump-
tions, they are a particularly promising tool in relation to meat processing. Thermal denaturation contains 
a lot of information concerning the quality of meats. The aim was to create a methodology of kinetic analysis 
to obtain a quick and accurate tool for meat protein denaturation in non-isothermal conditions based on 
The Coats-Redfern equation with the use of ANN.
Materials and methods. The analyses were carried out on samples of minced samples of Longissimus 
dorsi (pork). Thermal properties were determined using the differential scanning calorimetry (DSC) method 
with a Q100 TA Instruments apparatus. The data obtained was processed using the artificial neural network 
module in Statistica 13.0 software.
Results. The following models fit well with experimental data: F1 and F2 (r = 0.99, F Snedecor’s F statistics 
836943.20 and 971947.41 respectively). Deviations from experimental conversion degrees were higher for 
model F2, while for F1, good conformity was obtained across the whole range of α(T).
Conclusions. This preliminary study confirmed that methods of traditional kinetics of processes in non- 
-isothermal conditions based on the Coats-Redfern equation can be successfully applied to meat protein 
denaturation. The method of kinetic analysis allows a high level of accuracy to be achieved and meets the 
requirements of an efficient engineering tool.
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INTRODUCTION

The global increase in food production and processing 
has stimulated the sector to seek less time-consuming 
and more energy-efficient processes which depend 

mostly on heat transfer. Considering the wide varia-
tion in processed materials, and processing conditions 
themselves, an idea consistently put forward has been 
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the use of artificial neural networks (ANN) to optimize 
those processes on the basis of prediction models. One 
of the major advantages of ANN is that it allows the 
efficient handling of highly non-linear relationships 
between data. Resulting models are simple approxi-
mations of complex processes which occur during 
heat transfer (Hussain and Rahman, 1999). Addition-
ally, ANN are cost-effective and promise optimization 
algorithms due to their ability to model functions with 
high accuracy when training and validation proce-
dures are properly carried out (Mazutti et al., 2010). 
According to Rahman et al. (2012) the use of artificial 
neural network algorithms helps to overcome calcu-
lation difficulties related to the thermal conductivity 
of foods which de facto depend on food composition, 
structure and processing conditions. Neural networks 
function as a universal approximating system with the 
ability to learn from, adapt to and generalise about the 
knowledge acquired. The ANN method is especially 
applicable to multivariate data sets with nonlinear de-
pendencies, and it does not require variables to fit any 
theoretical distribution (Carling, 1992; Fausett, 1994; 
Tadeusiewicz, 2001). Therefore, ANN modelling has 
been widely used in the prediction of the heat transfer 
of various foods (Rahman et al., 2012). However, in 
the case of analysis of heat transfer in meat, including 
characteristics of protein denaturation, no ANN stud-
ies have been performed before now.

Most studies focused on the conformational chan-
ges of the proteins in meat have so far focused on 
a determination of denaturation temperatures using 
differential scanning calorimetry (DSC), a method 
used to characterise mainly the thermodynamics of 
the denaturation of a protein. Since denaturation in-
duces complex physico-chemical and structural 
changes in meat properties, DSC, with all its advan-
tages, has now become commonplace in the assess-
ment of the thermal stability of proteins (Durowoju 
et al., 2017; and references therein). However, the 
results of temperature-induced structural changes in 
meat are scattered throughout scientific papers and 
mostly concern a specific food material, only par-
tially revealing the mechanisms and effects of those 
changes. Generally, available results for the denatura-
tion of pork, beef (Pospiech et al., 2002) or chicken 
proteins (Murphy et al., 1998) provide only tem-
perature ranges for a given transformation and no 

thermo-gravimetry (TG) or DSC analyses (TG-DSC) 
have been performed with regard to ANN-supported 
kinetics of temperature-induced processes. Kinetic 
analysis often poses difficulties since calculations are 
based on theoretical assumptions and results may not 
be entirely applicable to real processes, owing to heat 
balance or gas phase mass transfer resistance. Linear 
or non-linear estimations sometimes ambiguously in-
dicate the best fit. Therefore, the combination of TG-
DSC supported by calculations from ANN methods 
may significantly improve the accuracy of interpre-
tations of DSC-thermograms obtained for meat sam-
ples. Meat is mostly the muscle tissue which consists 
of approximately 20% protein, which can be divided 
into three groups, i.e. myofibrillar (50–55%), sarco-
plasmic (30–34%) and connective tissue proteins 
(10–15%). As well as proteins, 75% water, 3% fat 
and 2% non-protein substances (e.g. non-protein 
nitrogen-containing substances, carbohydrates, inor-
ganic compounds) make up the rest of meat (Torn-
berg, 2005). The complex structure of meat means 
that conformational changes of the proteins occur-
ring on heating depend not only on the main protein 
component but also on other muscle elements and in-
trinsic interactions between them. Hence, the use of 
artificial neural networks to assess the kinetic param-
eters of temperature-induced denaturation of proteins 
seems justified. In particular, the profiling of meat de-
naturation will help to determine heating conditions 
(e.g. time and rate) and lead to the optimization of 
the thermal processing of pork meat, whose volume 
of production is increasing rapidly and is projected 
to follow this trend in view of the constantly grow-
ing demand (Marquer et al., 2015). Therefore, the 
objective of this work was to quantify the kinetics 
of protein denaturation during the thermal process-
ing of pork loin meat using DSC. Furthermore, it was 
to develop and assess thermal conductivity predic-
tion models for the denaturation of proteins in ana-
lysed samples based on an artificial neural network 
modelling.

MATERIALS AND METHODS

Raw material and sample preparation
Fresh pork specimens (Longissimus dorsi; 24 h post 
mortem) were bought in local butcher’s stores and 
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transported to the laboratory, where they were held 
at about 4°C for 1–2 h. The muscles were trimmed of 
external fat and connective tissues and minced through 
4 mm diameter perforations. After mixing, five indi-
vidual meat samples were immediately collected for 
testing using DSC.

Differential Scanning Calorimetry
Thermal properties were determined using the DSC 
method with a Q100 (TA Instruments) apparatus. The 
instrument was temperature-calibrated using water 
and indium. Enthalpy was calibrated with indium. 
Empty pans were used as reference. The samples, 
which weighed between 10 and 25 mg (accuracy of 
±0.01 mg), were placed in pans, hermetically sealed 
and submitted to DSC analysis. The denaturation 
enthalpy (ΔH) of the peaks was estimated by using 
a heating rate of 5°C min–1 from 30°C to 90°C.

Kinetics
In kinetics, the reaction rate of a process (r) proceed-
ing with the participation of solid reacting substances 
can be determined using the following equation:

 
dt
dα

r =  (1)

where:
α – conversion degree,
t – time.

The rate depends on temperature (T) and conver-
sion degree: 

 r = h(T, α) (2)

After separation of variables, equation (2) has the 
form: 

 r = k(T)f(α) (3)

where:
k(T) – reaction rate constant,
f(α) – conversion function dependent on mecha-

nism of reaction.

In the theory of non-isothermal processes, the de-
pendence of the reaction rate on the temperature is 
commonly described by the Arrhenius equation. Thus, 

formula (3) for isothermal conditions (in a developed 
form) can be written as follows: 

 ( )αf
RT
EAexp

dt
dα







−=  (4)

where:
A – pre-exponential Arrhenius factor,
E – apparent activation energy,
R – gas constant.

Assuming a linear increase in temperature and 
constant heating rate, we obtain (Coats and Redfern, 
1964; Ortega, 1996; Straszko et al., 2005; Vyazovkin 
and Width, 1999): 

 ( )αf
RT
Eexp

β
A

dT
dα







−=  (5)

where:
β – heating rate.

After integration formula (5) has the following 
form:

 ( ) ∫ 





−=

T

T0

dT
RT
Eexp

β
A

αg  (6)

where:
g(α) – integral form of the kinetic model.

The low integration limit results from the fact that 
within a temperature range from 0 to T0 the reaction 
does not proceed. T0 denotes the initial temperature of 
a given stage. The integral on the right side of equa-
tion (6) does not have an analytical solution. The 
Coats-Redfern approximation is most often applied 
(Coats and Redfern, 1964). As a result, the Coats-Red-
fern equation is obtained: 

 ( )
RT
E

E
2RT1

βE
ARln

T
αgln 2 −














 −=






  (7)

The foregoing formula is a theoretical linear mod-
el and may not be sufficiently fulfilled for real pro-
cesses due to different particle size and geometry, 
heat balance or gas phase mass transfer resistance. If 
the influence of these factors is not big and does not 
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alter the kinetic model, they can be treated as inter-
nal randomness for series at the same, and at different 
heating rates. In this case, linearization of non-linear 
equations, as is widely used to treat various prob-
lems, can be applied. That means that measurements 
should be treated as a stochastic process with a deter-
ministic equation, but random errors associated with 
the coefficients. Linear equation parameters should 
be estimated so that they best approximate the non- 
-linear model. Calculations are based on minimiza-
tion of the error, which is treated as a stochastic pro-
cess. This procedure can be applied for small devia-
tions from linearity.

During the kinetic analysis of multi-stage pro-
cesses, for each stage, the appropriate form of the g(α) 
function (kinetic model) is determined and the param-
eters of the Arrhenius equation (A, E) are calculated. 
Usually, identification of kinetic models is performed 
using statistical assessment. However, in many cases 
models cannot be distinguished in this way and addi-
tional criteria are needed, as described below.

A quantitative description of the process studied 
was based on the DSC curve, specifically on heat 
flow – W/g. For each transformation peak, integra-
tion was performed using a linear baseline and then 
the heat of transition (enthalpy H, J/g) was calculated. 
Based on the integral, the conversion degree was esti-
mated as follows:

 ( )
RT
E

E
2RT1

βE
ARln

T
αgln 2 −














 −=






  (8)

where:
Hc – current enthalpy, 
Hs – the enthalpy of the transition start,
He – the enthalpy at the transition end. 

The applied method of kinetic analysis consisted of 
several steps (Biedunkiewicz et al., 2007; 2008; Coats 
and Redfern, 1964; Hopfield, 1982; Mc Culloch and 
Pitts, 1943; Ortega, 1996; Sobczyk, 1996; Straszko 
et al., 2005; Tadeusiewicz, 1993; Widrow and Hoff, 
1960; Vyazovkin and Width, 1999). Calculated α(T) 
functions were assessed by artificial neural networks 
(ANN) using StatSoft software STATISTICA 13 to 

check whether, in accordance with theory, the tem-
perature was sufficient for a functional description 
of the conversion degree. At the first attempt, both 
multi-layer perceptrons (MLP) and radial basis func-
tion networks (RBF) were tested. Better preliminary 
results were obtained for MLP, therefore, they were 
used in further analyses. The performance MLP model 
was assessed by Pearson’s correlation coefficient be-
tween experimental and predicted data, and also by 
the SD Ratio (the ratio of prediction error standard 
deviation to standard deviation of experimental data). 
These parameters were calculated separately for train-
ing (Tr), verification (Ve) and testing (Te) subsets. The 
subsets were chosen randomly – 70% of cases formed 
the training subset, 15% the verification subset and 
the same percentage of cases fell into the testing sub-
set. Consecutive neural networks were designed and 
trained using back propagation (Haykin, 1994; Fau-
sett, 1994; Patterson, 1996) and conjugate gradient 
algorithms (Bishop, 1995). 

In a subsequent analysis, the following kinetic 
models were tested: D1, D2, D3, D4, F1, F2, F3, A2, 
A3, R1, R2, R3 (Table 1). The reason that 12 mod-
els were tested was to indicate the best mathematical 
description of each protein denaturation phase and to 
test if the models commonly used so far have not ex-
cluded other models which would better fit the data. 
Preliminary selection was based on the assumption 
of fulfilling linearity in the co-ordinate system. The 
quality of fit was assessed by linear regression. Ad-
ditionally, the fulfilment of the Coats-Redfern equa-
tion was evaluated with linear neural network models. 
Parameters of the Arrhenius equation calculated from 
a given model by means of linear regression were ad-
justed by stochastic linearization, i.e. correction of the 
E value so that the mean percentage error in a series 
approached zero. 

The identification of the final kinetic model was 
supported by additional criteria. It was required that 
linearity in all the series of measurements was fulfilled 
for the same g(a) function. Plots of k(T) dependencies 
had to be convergent in spite of differences in A and E 
values between series. Finally, consistency was neces-
sary between α(T) values calculated from the Coats-
Redfern equation and those determined from measure-
ments over a wide range.
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RESULTS AND DISCUSSION

Conversion degrees calculated for consecutive stag-
es are shown in Figure 1. Analysis of the transition 
curves obtained for each sample of l. dorsi showed the 
presence of four peaks related to protein denaturation. 
In most cases, typical DSC thermograms obtained for 
pork meat show three peaks which are characteris-
tic for thermal denaturation of myosin (about 56°C), 
sarcoplasmic proteins (about 65°C), and actin (about 
79°C) (Fernandez-Martin et al., 2000; Zhu et al., 
2004). These results of the DSC analysis revealed an 
additional peak (about 42–45°C), which, according 
to the author, show a denaturation of the least heat-
stable myosin and myosin sub-fragments, i.e. heli-
cal tail, hinge-region and globular heads (Wright and 
Wilding, 1984). Additionally, the presence of the 1st 
myosin peak might have resulted from the influence 
of the sample treatment (mincing), since this multi-
domain protein largely depends on external factors, 
such as sample temperature, pH and ionic strength 
(Thorarinsdottir et al., 2002; and references therein). 
It is interesting to note that the 1st peak also had the 
lowest enthalpy compared to the 2nd peak, which had 

the highest enthalpy, and the 3rd and 4th, which had in-
termediate values (Table 2). Moreover, in comparison 
to the three other peaks, the size of the 1st peak was 
the lowest (a broad and very small endothermic peak) 
indicated on the heterogenic and limited content of the 
proteins which underwent denaturation. Analysis of 
the kinetics of the thermal denaturation of meat pro-
tein revealed that the 1st, 2nd and 4th peaks followed 
a first-order reaction (model F1), where the thermal 
denaturation rate of meat protein is assumed to be 
proportional to the concentration of non-denatured 
protein. In contrast, the 3rd peak followed a second-
order reaction (model F2), which was manifested by 
a change in heat capacity (Kajitani et al., 2011). 

The α(T) dependencies obtained, with all the sam-
ples considered jointly, were assessed using a neural 
network technique. The architecture and performance 
of the neural models are given in Table 3. A high level 
of accuracy, as indicated by SD Ratio and correlation 
coefficients, was achieved for all the stages. Therefore, 
any errors occurring in the analyses would be caused 
by an insufficient fulfilment of the Coats-Redfern 
equation. The applied method of kinetic analysis will 
be presented using the example of stage I. In this case, 

Table 1. List of tested kinetic models

Mechanism Symbol f(α) g(α)

One-dimensional diffusion D1 α α2

Two-dimensional diffusion, cylindrical symmetry D2 [–ln(1 – α)]–1 (1 – α) ln(1 – α) + α

Three-dimensional diffusion, spherical symmetry, 
Jander equation

D3

Three-dimensional diffusion, spherical symmetry, 
Ginstling-Brounshtein equation

D4

1st order reaction F1 (1 – α) [–ln(1 – α)]

2nd order reaction F2 (1 – α)2 (1 – α)–1 – 1

3rd order reaction F3 (1 – α)3 (1 – α)–2 – 1

Random nucleation, Avrami I equation A2

Random nucleation, Avramiego II equation A3

Phase-boundary reaction, zero-order reaction R1 1 α

Phase-boundary reaction, cylindrical symmetry R2

Phase-boundary reaction, spherical symmetry R3
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Fig. 1. Conversion degrees calculated for consecutive stages: a–e analysed samples
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Table 2. Results of DSC analysis of pork meat protein denaturation

Sample Sample weight, mg Peak Temperature range, °C Enthalpy, J/g Model E, J/mol A, 1/min

1 15.8 1 41.24–47.75 0.05 F1 244.46 1.30E + 16

2 54.01–59.87 0.22 F1 125.36 1.69E + 08

3 64.79–73.14 0.15 F2 116.67 3.04E + 07

4 73.89–79.79 0.07 F1 183.65 3.71E + 11

2 23.6 1 38.38–48.18 0.05 F1 92.53 5.25E + 05

2 51.49–64.20 0.60 F1 86.43 1.48E + 05

3 64.80–73.37 0.12 F2 191.51 1.43E + 12

4 75.24–82.33 0.15 F1 97.11 1.19E + 06

3 10.5 1 38.20–46.50 0.02 F1 90.33 2.93E + 05

2 52.38–61.88 0.41 F1 223.93 4.13E + 14

3 62.16–71.66 0.79 F2 115.22 3.04E + 07

4 73.52–82.22 0.30 F1 106.42 5.23E + 06

4 19.4 1 40.78–46.53 0.01 F1 183.60 3.70E + 11

2 49.67–60.84 0.58 F1 92.72 5.48E + 05

3 62.42–73.09 0.13 F2 86.40 1.47E + 05

4 74.11–82.15 0.16 F1 245.16 1.20E + 16

5 18.5 1 39.37–47.43 0.04 F1 123.38 1.49E + 08

2 50.81–61.16 0.37 F1 130.65 3.01E + 07

3 61.63–72.85 0.11 F2 153.64 3.61E + 11

4 75.23–82.05 0.18 F1 99.52 5.35E + 05

Table 3. Statistical assessment of α = f(T) neural models of samples of consecutive stages of protein denaturation. Neural 
network architecture: input neurons/hidden neurons

Parameter

Tr Ve Te Tr Ve Te

Stage I, MLP 1/4/1 Stage II, MLP 1/3/1

SD Ratio 0.0120 0.0127 0.0129 0.0172 0.0183 0.0181

Correlation 0.999 0.999 0.999 0.999 0.999 0.999

Stage III, MLP 1/3 Stage IV, MLP 1/3

SD Ratio 0.0240 0.0243 0.0240 0.0190 0.0194 0.0189

Correlation 0.999 0.999 0.999 0.999 0.999 0.999

Tr – training, Ve – verification, Te – testing subsets.
MLP 1/4/1: number of input neurons / number of hidden neurons / number of output neurons.
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on the basis of the preliminary assessment of linear-
ity in the co-ordinate system, the following models fit 
well with the experimental data: F1 and F2 (r = 0.99, 
F Snedecor’s F statistics 836943.20 and 971947.41 re-
spectively). Kinetic parameters differed between each 
series of measurements because of deviations from 
linearity rather than physical factors. Plots during line-
ar regression calculations had different slopes between 
series and therefore different A and E values. Statisti-
cal parameters were at the same level for all the mod-
els and an unambiguous choice of one of them was not 
possible. Using linear neural network models, which 
considered all the samples jointly (Table 4), similar re-
sults were obtained, and further criteria had to be used. 

Dependencies k(T) were highly convergent for models 
F1 and F2 (and on that basis they were chosen for fur-
ther calculations). Using A and E parameters, values of 
the ln(g(α)/T2) function were calculated. A consider-
able systematic error was corrected by a slight change 
in parameter E in order to improve the fit of the linear 
model. The objective function was a minimal error in 
a series (close to 0). Using the corrected values of the 
Arrhenius parameters, dependencies α(T) were calcu-
lated for both models and compared with those deter-
mined from measurements. Deviations from the ex-
perimental conversion degrees were higher for model 
F2 while, for F1, good conformity was obtained in the 
whole range of α(T) (Fig. 2).

Table 4. Statistical assessment of ln(g(α)/T2) = f(Θ) neural models for all the samples. Protein denaturation in stage I

Model F1 Model F2

Tr Ve Te Tr Ve Te

SD Ratio 0.1516 0.1663 0.1734 0.1649 0.1760 0.1827

Correlation 0.988 0.986 0.985 0.986 0.984 0.983

Tr – training, Ve – verification, Te – testing subsets.

Fig. 2. Comparison of experimental α(T) functions and those calculated from the 
kinetic model for stage I of protein denaturation
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Kinetic parametrization has so far mostly consisted 
of an evaluation of the reaction order, reaction rate, 
rate constant, pre-exponential factor and activation en-
ergy for a given heating rate using the Arrhenius equa-
tion (e.g. Skipnes et al., 2008). Recently, some studies 
have reported on the application of the Coats-Redfern 
equation to a kinetic analysis of temperature-induced 
processes occurring in foodstuffs (e.g. Amorim et al., 
2004; Santos et al., 2004), but it has not been applied 
to meat yet.

This example of a calculation procedure was ap-
plied to all the stages of protein denaturation in this 
study and produced results at the same level of model 
performance accuracy. This method has so far been 
used in chemical and process engineering studies 
(Biedunkiewicz et al., 2008), but for the first time it 
has given good results in food research. Protein dena-
turation in meat, as seen in Figure 1, produces highly 
diverse DSC curves compared to chemical laboratory 
experiments and is difficult for mathematical descrip-
tion. The changeability of the meat structure and its 
chemical composition cause problems in unifying the 
protein denaturation processes. Taking into account 
that we analysed five different samples and obtained 
corresponding results, our method seems to provide 
the chance for extrapolation to other meat samples. 
Samples differed by the source, i.e. differed by their 
chemical composition. The use of ANN can overcome 
that problem in kinetic analysis as we look at the ac-
curacy of experimental and calculated conversion de-
grees as shown in Figure 2. This was the final assess-
ment of the performance of the analysis method and 
shows its high level of accuracy, compared to mate-
rials synthesised in a laboratory, like nanocomposites 
(Biedunkiewicz et al., 2008).

CONCLUSIONS

This preliminary study confirmed that methods of the 
traditional kinetics of processes in non-isothermal 
conditions based on the Coats-Redfern equation can 
be successfully applied to meat protein denaturation. 
The method of kinetic analysis allows a high level of 
accuracy to be achieved and meets the requirements 
of an efficient engineering tool. Further application of 
the proposed methodology applied to a larger number 
of samples with other distinguishing factors (feeding, 

age, breed, species, post mortem conditions of age-
ing etc.) is promising in building a universal model of 
meat protein denaturation.
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