TY - JOUR T1 - Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions A1 - Reza Amiri Chayjan A1 - Mosayeb Fealekari JO - Acta Sci. Pol. Technol. Aliment VL - 16 IS - 2 SP - 157-170 Y1 - 2017 UR - https://www.food.actapol.net/volume16/issue2/5_2_2017.pdf SN - 1644-0730 KW - infrared, color changes, response surface, mooseer, optimization, shrinkage AB - Background. In recent years, infrared drying has gained popularity as an alternative drying method for a va- riety of agricultural products. The use of infrared radiation technology in drying agricultural products has several advantages. These may include decreased drying time, high energy efficiency, high-quality finished products and uniform temperature in the product. With intermittent infrared and convection heating of a thick porous material, the drying time can be reduced compared to convection alone, while keeping good food quality and high energy efficiency. Material and methods. Response surface methodology (RSM) was employed to optimize the drying con- ditions of mooseer under infrared-convective drying. Experiments were performed at air temperatures of  40, 55 and 70°C, infrared powers of 500, 1000 and 1500 W, air velocities of 0.5, 1.5 and 2.5 m/s and slice thicknesses of 2, 4, and 6 mm. In this study, effective moisture diffusivity (Deff), shrinkage, color changes and specific energy consumption (SEC) were investigated. The central composite design (CCD) was selected for the design and optimization of the process. Results. Deff was obtained between 1.4×10 and 3.57×10    m /s. With increasing air temperature and slice –10                                  –9       2 thickness, Deff also increased. The level of shrinkage rose as slice thickness increased. The highest and lowest values of color changes were calculated at air temperatures of 70°C (52.3%) and 40°C (5.65%), respectively. Increasing air velocity led to an increase in SEC. Conclusion. Optimum conditions for mooseer drying were achieved at air temperature of 70°C, infrared power of 867.46, air velocity of 0.59 m/s and slice thickness of 2 mm. At this point, Deff, shrinkage, color changes and SEC was obtained as 1.32×10–9 m2/s, 29.58%, 17.62% and 4.64 MJ/kg, respectively. The desir- ability value of 0.689 was achieved for the drying process.   ER -