original articleIssue 16 (2) 2017 pp. 157-170
Reza Amiri Chayjan, Mosayeb Fealekari
Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions
Background. In recent years, infrared drying has gained popularity as an alternative drying method for a va- riety of agricultural products. The use of infrared radiation technology in drying agricultural products has several advantages. These may include decreased drying time, high energy efficiency, high-quality finished products and uniform temperature in the product. With intermittent infrared and convection heating of a thick porous material, the drying time can be reduced compared to convection alone, while keeping good food quality and high energy efficiency.
Material and methods. Response surface methodology (RSM) was employed to optimize the drying con- ditions of mooseer under infrared-convective drying. Experiments were performed at air temperatures of 40, 55 and 70°C, infrared powers of 500, 1000 and 1500 W, air velocities of 0.5, 1.5 and 2.5 m/s and slice
thicknesses of 2, 4, and 6 mm. In this study, effective moisture diffusivity (Deff), shrinkage, color changes and specific energy consumption (SEC) were investigated. The central composite design (CCD) was selected for the design and optimization of the process.
Results. Deff was obtained between 1.4×10 and 3.57×10 m /s. With increasing air temperature and slice
–10 –9 2
thickness, Deff also increased. The level of shrinkage rose as slice thickness increased. The highest and lowest values of color changes were calculated at air temperatures of 70°C (52.3%) and 40°C (5.65%), respectively. Increasing air velocity led to an increase in SEC.
Conclusion. Optimum conditions for mooseer drying were achieved at air temperature of 70°C, infrared power of 867.46, air velocity of 0.59 m/s and slice thickness of 2 mm. At this point, Deff, shrinkage, color changes and SEC was obtained as 1.32×10–9 m2/s, 29.58%, 17.62% and 4.64 MJ/kg, respectively. The desir- ability value of 0.689 was achieved for the drying process.
Keywords: infrared, color changes, response surface, mooseer, optimization, shrinkage
https://www.food.actapol.net/volume16/issue2/5_2_2017.pdf
https://doi.org/10.17306/J.AFS.2017.0471
MLA | Chayjan, Reza Amiri, and Mosayeb Fealekari. "Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions." Acta Sci.Pol. Technol. Aliment. 16.2 (2017): 157-170. https://doi.org/10.17306/J.AFS.2017.0471 |
APA | Chayjan R. A., Fealekari M. (2017). Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions. Acta Sci.Pol. Technol. Aliment. 16 (2), 157-170 https://doi.org/10.17306/J.AFS.2017.0471 |
ISO 690 | CHAYJAN, Reza Amiri, FEALEKARI, Mosayeb. Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions. Acta Sci.Pol. Technol. Aliment., 2017, 16.2: 157-170. https://doi.org/10.17306/J.AFS.2017.0471 |