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ABSTRACT

Background. Tea, a globally popular beverage, is frequently adulterated with various additives for profit. 
However, research on these additives – particularly their common combinations in fraudulent practices – 
remains limited.
Materials and methods. This study uses mid-infrared (MIR) spectroscopy and machine learning techniques 
to identify such additives in tea. We trained several models – AdaBoost, random forest, K-nearest neighbours 
(KNN), support vector classification, Gaussian naive Bayes, and decision tree – to detect adulterants such as 
white sugar, talcum powder, sulphur, paraffin wax, food colouring, and flavourings, as well as their combina-
tions. To improve accuracy and efficiency, we employed the Successive Projections Algorithm (SPA) and 
Competitive Adaptive Reweighted Sampling (CARS) for feature selection, prioritising features that exhibited 
the strongest correlations with the additives.
Results. Compared to models relying solely on raw spectra, those incorporating SPA and CARS consistently 
achieved high accuracy and reduced detection time by at least 90%. The selected wavenumbers also serve as 
biomarkers for specific additives. The SPA-KNN model performed exceptionally well, with an accuracy of 
0.956, macro-precision of 0.964, macro-recall of 0.956, and a macro-F1 score of 0.956, all with a detection 
time of just 0.9 seconds.
Conclusion. These results highlight the effectiveness of combining MIR spectroscopy with advanced clas-
sifiers and feature selection algorithms, offering a rapid and precise method for detecting tea additives. This 
approach benefits producers, distributors, and consumers alike.
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INTRODUCTION

Tea is one of the world’s most popular beverages, 
cherished for its flavour and taste. However, tea mer-
chants may illegally add certain additives during pro-
duction to conceal quality defects, enhance the colour 
of tea leaves, reduce production costs, and increase the 
price. Common additives include white sugar, talcum 
powder, sulphur, paraffin wax, food colouring, and 
flavourings. Talcum powder, a widely used industrial 
mineral in body and face powders, has been linked to 
an increased risk of cancer (Ng et al., 2012; Nnorom, 
2011). Research has shown that excessive use of tal-
cum powder may elevate cancer risks (Li et al., 2016). 
Although sulphur is an essential trace element in the 
human body, excessive consumption can have harm-
ful effects on health. Substances like flavouring, par-
affin, food colouring and white sugar, are permitted 
food additives within regulated limits, but exceeding 
these limits can negatively impact health. Tea with 
added white sugar is prone to moisture absorption, 
making it challenging to assess its quality over time. 

If individuals with diabetes consume deteriorated tea, 
it may trigger their condition. Additives in production 
may also introduce impurities from raw materials, 
leading to contamination with toxic compounds that 
can cause acute and chronic poisoning. For instance, 
the antioxidant butylated hydroxyanisole, a common 
preservative, can accumulate in the body and damage 
the thyroid system, disrupt metabolism and growth, 
and pose neurotoxic and carcinogenic risks (Zhang 
et al., 2023). Furthermore, the addition of illegal ad-
ditives in tea production is prohibited under China’s 
food safety standard GB/T14456.17.

Infrared (IR) spectroscopy is widely recognised as 
a powerful tool for analysing chemical components 
based on specific absorption frequencies correspond-
ing to functional groups. Compared with other detec-
tion methods, such as nuclear magnetic resonance 
(NMR), mass spectrometry and Raman spectroscopy, 
IR spectroscopy offers advantages in speed, cost-ef-
fectiveness and ease of use, making it widely applied 
in food research. Machine learning, a key branch of 
artificial intelligence, uses large datasets and statistical 
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methods to enable computers to learn from data and 
generate models autonomously (Gao et al., 2024a; 
2024b; Qiu et al., 2024). This empowers machines to 
make predictions, decisions, and identifications based 
on past experiences. Combining IR spectroscopy with 
machine learning enhances prediction accuracy and ef-
ficiency, facilitating automated analysis of large-scale 
data to uncover hidden patterns and relationships. 
Researchers have investigated various applications, 
such as detecting microbial spoilage (Ellis et al., 2002; 
2004), identifying food varieties and geographical ori-
gins (Chen et al., 2023; Özdemir et al., 2024; Xiao et 
al., 2024), and recognising food adulteration (Da Cos-
ta Filho et al., 2022; Valand et al., 2020).

In tea research, IR spectroscopy has been used to 
differentiate the origin of tea (He et al., 2012; Zhuang 
et al., 2017), assess its quality (Ding et al., 2022; Xia 
et al., 2024), and identify different varieties (Zhang 
et al., 2024a; 2024b). While researchers (Amsaraj et 
al., 2023; Li et al., 2016) have conducted quantitative 
analyses of additives such as sunset yellow and talcum 
powder in tea using regression models, many other 
commonly used additives remain unexplored. Moreo-
ver, no comprehensive model has yet been developed 
that can simultaneously identify multiple additives in 
tea. Current research mainly focuses on individual ad-
ditives, but adding combinations of multiple additives 
is a common practice in illicit tea production.

IR instruments often generate spectral data exhibit-
ing high collinearity, and mathematical models based 
on the full spectrum, which includes many irrelevant 
spectral variables, can reduce prediction accuracy. 
Traditional manual selection of spectral ranges may 
either lose important information or retain excessive 
redundant information. Furthermore, from a model in-
terpretation standpoint, it remains challenging for ana-
lytical chemists and chemometricians to identify the 
specific wavelengths or combinations responsible for 
the properties of interest. Both experimentally and the-
oretically, the calibration model’s performance can be 
improved by using selected informative wavelengths 
rather than the full spectrum (Li et al., 2009). To ad-
dress this, effective methods, such as the successive 
projections algorithm (SPA) (Tang et al., 2018) and 
competitive adaptive reweighted sampling (CARS) 
(Li et al., 2023) have been employed to eliminate re-
dundant information from wavelengths in this study.

The objective of this research is to explore the appli-
cation of mid-infrared (MIR) spectroscopy in differen-
tiating various additives in tea. The specific goals are:
1.	 Establishing models using MIR spectroscopy to 

differentiate between various additives, including 
talcum powder, food colouring (sunset yellow), 
white sugar, tea flavouring, sulphur, and paraffin 
wax, employing six classifiers: AdaBoost, random 
forest (RF), K-nearest neighbour (KNN), support 
vector classification (SVC), Gaussian naive Bayes 
(GNB), and decision tree (DT).

2.	 Investigating the differentiation of tea samples 
with multiple additive combinations.

3.	 Determining the optimal spectral preprocessing 
combination.

4.	 Utilising SPA and CARS to select the most relevant 
wavenumbers and improve model performance.

This study takes into account the complex and di-
verse adulteration practices encountered in real-world 
scenarios, making it a valuable addition to the existing 
research on tea additive identification.

MATERIALS AND METHODS

Sample preparation
The products used in the experiment were as follows: 
Wuyi rock tea (First Class Teas Inc., Wuyishan City, 
Fujian, China), white sugar (Sanlvyuan Food Factory, 
Tong’an District, China), talcum powder (Guilin Gui-
guang Talc Development Co., Ltd., China), food col-
ouring (Sunset Yellow) (Dongguan Jinjiahe Food Co., 
Ltd., China), paraffin wax (Penglei Chemical Divi-
sion, China), tea flavouring (Dongguan Jinjiahe Food 
Co., Ltd., China), and sulphur (Dongguan Jinjiahe 
Food Co., Ltd., China). All the products were sealed 
in plastic bags with desiccants and stored at 25°C in 
the laboratory.

The sample preparation scheme is presented in 
Figure 1. Since the use of additives in tea is prohibited 
in China, specific dosage information from published 
sources is unavailable. Therefore, based on informa-
tion from illicit vendors, it was determined that during 
the tea frying process, the ratio of additives to fresh tea 
leaves is typically 1:50. At this ratio, additives are not 
easily detectable by consumers, and the small quan-
tity of additives contributes to the practicality of this 
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study. Tea production with additives was outsourced 
to First Class Teas Inc. In total, eight types of addi-
tives were used: (1) white sugar, (2) talcum powder, 
(3) food colouring, (4) paraffin wax, (5) tea flavouring, 
(6) sulphur, (7) white sugar + paraffin wax, and (8) 
talcum powder + paraffin wax + tea flavouring.

After drying the samples in a drying chamber 
(Shangcheng Co., Ltd., China) at 43°C for 2 hours, 
they were weighed using a balance with 0.0001 g ac-
curacy (Lichen Co., Ltd., China). The tea was ground 
into fine particles and passed through a 100-mesh 
sieve to ensure uniform particle size. The tea was then 
blended with the additives in the prescribed propor-
tions. Subsequently, 3 mg of either pure or adulterated 
tea leaves were weighed and combined with potas-
sium bromide in a 1:10 ratio to prepare samples using 
the potassium bromide pellet technique. The pure and 
adulterated tea tablets (3 mg) were then produced fol-
lowing this method (Donald et al., 1954). A total of 
60 tablets were prepared for pure tea and each type of 
adulterated tea, resulting in 540 tablets in total.

Acquisition of MIR Spectra
IR spectral acquisition was performed at a constant 
temperature of 25°C using a WQF-500 Fourier trans-
form infrared (FTIR) spectrometer (Beifen-Ruili Ana-
lytical Instrument Co., Ltd., China). The instrument 
was operated with Main FTOS Suite software (Beifen-
Ruili Analytical Instrument Co., Ltd., China). Spectra 
were recorded in absorbance mode, covering the range 
of 4500 to 400 cm−1, with 256 scans and a total of 4253 
variables. The measurement background, represented 

by potassium bromide, was subtracted from the sam-
ple spectra. Three measurements were taken for each 
sample and then averaged.

MIR Spectra Preprocessing
First, all spectra were pretreated using min-max nor-
malization (MM-norm) (Borkin et al., 2019) and au-
tomatic baseline correction (BC) (Shao et al., 2007) 
methods via the main FTOS Suite software. To fur-
ther optimise the spectra for efficient information ex-
traction, the standard normal variate (SNV) (Barnes 
et al., 1989), Savitzky-Golay (SG) (Zimmermann et 
al., 2013), and first and second derivatives (FD/SD) 
(Rinnan et al., 2009; Whitbeck, 1981) were applied. 
These preprocessing methods were implemented in 
Python using Spyder compiler software (Anaconda, 
Inc., USA). MM-norm scales the data range into 
a specific interval, reducing the parameter update step 
size during the gradient descent process and thereby 
improving the algorithm’s convergence speed. BC 
aids in identifying true peaks by removing or adjust-
ing the baseline offset in the signal or spectrum, im-
proving the accuracy and precision of the analysis. It 
also facilitates the identification and interpretation of 
specific features. SNV is primarily used to eliminate 
the effects of solid particle size and surface scatter-
ing, reduce interference in spectral data, and enhance 
data comparability and interpretability. SG helps re-
duce signal vibration, minimise noise, enhance sig-
nal characteristics, and suppress unwanted spectral 
features caused by the instrument and sample. FD 
removes the influence of baseline drift and smooths 

Fig. 1. Overview of sample production
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background interference, improving resolution. SD 
enhances spectral resolution, eliminates background 
noise, and increases the accuracy and reliability of IR 
spectral analysis. The performance of these combina-
tions was evaluated using spectra pretreated with the 
MM-norm and BC.

Machine Learning Workflow
The workflow of the machine learning model is de-
picted in Figure 2. The dataset was randomly split into 
a training set (n = 540) and a test set (n = 90) at a 6:1 
ratio, as shown in the upper dotted box in Figure 2. 
The data underwent preprocessing with various com-
binations of methods, and the optimal combination 

was determined through 10-fold cross-validation and 
a grid search, implemented in Python using the scikit-
learn toolbox, as depicted in the left section of the 
middle-dotted box in Figure 2. Feature wavenumbers 
were then selected using SPA and CARS, as shown in 
the right section of the middle-dotted box in Figure 2. 
In this study, nine classification models were built us-
ing six machine learning classifiers: AdaBoost (Ying 
et al., 2013), RF (Huang et al., 2023), KNN (Trigue-
ro  et al., 2019), SVC (Brereton et al., 2010), GNB 
(Wang et al., 2016), and DT (Barbosa et al., 2014), as 
shown in the lower dotted box of Figure 2. The code 
and parameter settings for the algorithms are available 
in the supplementary materials.

Fig. 2. Diagram of the machine learning workflow. (Min/Max = min-max normalization, SNV = 
standard normal variate, SD = second derivative, FD = first derivative, SG = Savitzky-Golay, SPA 
= successive projections algorithm, CARS = competitive adaptive reweighted sampling, RF = 
random forest, DT = decision tree, KNN = K-nearest neighbour, SVC = support vector classifica-
tion, GNB = Gaussian naive Bayes)
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Evaluation Metrics
To assess the fit and performance of the models and 
identify the one with optimal performance, this study 
calculates several evaluation metrics, including ac-
curacy, precision, recall, F1 score, macro-precision, 
macro-recall, and macro-F1 score. The specific defini-
tions and calculation methods for these indicators are 
provided in Table S1 in the supplementary materials. 
Additionally, the confusion matrix was visualised, and 
receiver operating characteristic (ROC) curves were 
plotted to provide a clearer evaluation of the model, as 
shown in the lower dotted box in Figure. 2.

RESULTS AND DISCUSSION

MIR Spectra Analysis
The MIR spectra of the pure tea samples and tea 
samples with the additives are shown in Figure 3. To 
improve the clarity of the spectra and facilitate inter-
pretation, automatic baseline correction and min/max 
normalization were applied. The pure tea samples 
and most tea samples with additives exhibited similar 
absorption bands, although with distinct differences 

in shape and intensity. The broad absorption band 
at approximately 3500 to 3000 cm–1 is primarily at-
tributed to the stretching vibrations of the hydroxyl 
group (-OH) and nitrogen–hydrogen bond (N-H) in 
polyphenols, polysaccharides, and hydrogen-con-
taining compounds (Wu et al., 2019). The hydroxyl 
group (-OH) band results from the moisture content 
in the tea leaves. The band at approximately 3000 
to 2700 cm–1 is mainly associated with the stretch-
ing vibrations of the hydrocarbon bond (C-H) gen-
erated by the protein and amino acid components in 
the tea leaves. Additionally, the band near 1690 to 
1640 cm–1 corresponds to the amide I band of pro-
tein molecules, primarily attributed to the stretching 
vibrations of carbonyl bonds (C=O) generated by 
polyphenolic compounds like catechins and theafla-
vins in tea leaves. The band near 1540 to 1500 cm–1 
represents the amide II band of proteins, mainly due 
to the in-plane bending vibrations of the peptide bond 
(-CONH-), which involves the nitrogen–hydrogen 
bond (N-H) generated by polyphenolic compounds 
(Xiang, 2011). Furthermore, the spectral region be-
tween 1200 and 950 cm–1 is characteristic of polysac-
charides (Ma et al., 2018).

The addition of various additives alters the compo-
sition of tea, resulting in noticeable differences in the 
spectra related to the constituent bonds. Therefore, ad-
ditives can be detected in tea through molecular bond 
information from the fingerprint region. Specifically, 
the addition of paraffin wax, white sugar + paraffin 
wax, and talcum powder + paraffin wax + tea flavour-
ing resulted in significant alterations in the infrared 
spectra of the tea samples. These changes can be at-
tributed to several factors:
1.	 Unique absorption features: As shown in Fig-

ure 4, paraffin wax exhibits strong bands between 
3000 and 2750 cm–1. Paraffin may exhibit its own 
characteristic absorption bands in the infrared 
spectra. For example, alkyl groups in paraffin wax 
may display absorption bands corresponding to 
the stretching vibrations of the hydrocarbon bond 
(C-H) within the wavenumber range from 3000 to 
2750 cm–1, as shown in Figure 3.

2.	 Band intensity and shape alterations: The incor-
poration of paraffin wax into tea affects its original 
nutrient content, volatile compound content, and 
overall composition. This leads to changes in the 

Fig. 3. Mid-infrared spectra of tea with wavenumber identi-
fiers:  = tea + paraffin wax,  = pure tea,  = 
tea + white sugar,  = tea + talcum powder,  = 
tea + sulphur,  = tea + food colouring,  = tea + tea 
flavouring,  = tea + talcum powder + paraffin wax + tea 
flavouring,  = tea + white sugar + paraffin wax
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absorption characteristics and vibrational modes 
of the infrared spectrum. Depending on the light 
absorption properties of the wax components and 
their interactions with the constituents of tea, these 
alterations can either amplify or attenuate the in-
tensity and shape of the absorption bands.

3.	 Band shifts: The presence of wax can cause shifts 
in the positions of certain absorption bands be-
tween 1750 and 1500 cm–1 and 1200 and 1000 cm–1,  
as shown in Figure 3. This occurs because the 
chemical components in paraffin wax may interact 
with the tea constituents, affecting the vibrational 
frequencies of the molecules.

Experienced tea experts can initially detect additives 
like paraffin wax by comparing the taste, aroma, and 
colour of the tea with known tea samples. In contrast, 
IR spectroscopy allows for a molecular-level analysis 
of the additives. Combining both approaches enables 
a more comprehensive evaluation of tea quality.

Notably, as shown in Figure 4, the IR spectrum of 
sulphur exhibits unusual band shapes. This is due to 
the use of natural sulphur, which exists as sulphur ore 
and contains high levels of impurities such as sand and 
rock. This results in discrepancies between its spec-
trum and the standard sulphur spectrum (Mohammadi 
et al., 2022). The distinctive paraffin bands observed 
between 3000 and 2750 cm–1 led to changes in peak 

intensity following its addition to tea. In contrast, the 
nearly complete absence of characteristic peaks for 
talcum powder and food flavouring compounds be-
tween 3500 and 2000 cm–1 led to a reduction in band 
intensity upon their incorporation into the tea. These 
spectral variations provide clear evidence of the pres-
ence of these additives, demonstrating the potential of 
infrared spectroscopy to detect and identify adulter-
ants in tea samples.

In 2016, Li et al. conducted an experiment in which 
tea was adulterated with talcum powder. The addition 
of talcum powder did not cause any noticeable changes 
in the IR spectra, consistent with previous results. In 
2023, Rani Amsaraj et al. studied tea adulteration with 
sunset yellow using machine learning. By comparing 
the IR spectra from these two experiments with those 
obtained from this study, similar bands and intensities 
were observed, indicating the validity of the findings. 
Both studies demonstrate the feasibility of quantita-
tively identifying additives using IR and machine 
learning. This study, therefore, aimed to use the Ada-
Boost, GNB, SVC, KNN, RF, and DT algorithms to 
develop classification models for different additives.

Optimisation of the spectral preprocessing 
combination
To optimise the combination of spectral preproc-
essing, the performances of various preprocessing 
methods were calculated and compared using the 
AdaBoost classifier, as shown in Table S2 in the sup-
plementary materials. The results indicated that the 
AdaBoost classifier effectively distinguishes tea ad-
ditives, with a 10-fold cross-validation score rang-
ing from 0.836 to 0.960. The optimal combination 
of spectral preprocessing was SNV&SD&SG, which 
achieved a discrimination rate of 0.960. The second-
best combination of spectral preprocessing meth-
ods was FD&SG, yielding a discrimination rate of 
0.947. Notably, applying FD/SD processing to only 
the raw* data resulted in lower scores, and combin-
ing SNV with derivatives also resulted in a decrease 
in scores. The results obtained by applying FD to 
the raw* data were the lowest, with a score of only 
0.844. These results highlight the crucial role of SG 
as a preprocessing method. The reduced accuracy 
of the infrared spectra without smoothing treatment 
can be attributed to the presence of noise and stray 

Fig. 4. Mid-infrared spectra of additives with wavenumber 
identifiers:  = paraffin wax,  = food colouring, 

 = talcum powder,  = white sugar,  = tea fla-
vouring,  = pure tea, and  = sulphur
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signals. Interference from noise and stray signals can 
cause peak broadening or false peaks, leading to a de-
crease in the accuracy of the IR spectra. In general, 
the cross-validation scores for various combinations 
of preprocessing methods were higher than those for 
the raw* data.

Feature Selection via SPA and CARS
IR spectroscopy typically covers a wide range of 
wavenumbers, some of which are irrelevant to the 
model. Therefore, it is necessary to eliminate these 
interfering wavenumbers and select the most relevant 
ones to improve the model’s accuracy and reduce 
modelling time. In 2019, Sun et al. proposed using 
SPA and CARS coupled with stepwise regression to 
select characteristic wavelengths, thereby enhancing 
the correlation coefficient of the prediction set in the 
established multiple linear regression model. In this 
study, SPA and CARS were employed to select the 
most relevant frequencies for the classification mod-
el. As a result, 41 effective feature wavenumbers were 
obtained via SPA, and 297 effective feature wave-
numbers were obtained via CARS from the spectra 
of 540 samples. These features are highlighted as 
dashed lines in Figure 5.

Both SPA and CARS are feature selection meth-
ods used in spectral analysis. SPA progressively se-
lects feature variables with maximum correlation to 
an additive target (Esteki et al., 2016), whereas CARS 
adaptively adjusts feature weights by considering 
competition between features and selects those with 
the strongest classification ability. Both algorithms 
may employ attentional focusing strategies that pri-
oritise relevant features, improving classification 
accuracy and enhancing differentiation between ad-
ditives. The choice of feature selection strategy ulti-
mately depends on the specific experimental design, 
data characteristics, and algorithmic considerations. 
SPA extracts features by calculating the area under 
the peak region in the spectra, while CARS extracts 
features through fitting or peak analysis of the spec-
tra. SPA focuses only on the peak region, whereas 
CARS typically selects more features, including peak 
position, peak intensity, and peak width. Thus, SPA 
and CARS select different wavenumbers because of 
their underlying principles and evaluation criteria. Al-
though the wavenumbers selected by SPA and CARS 

were not identical, significant overlaps between them 
indicated that certain features in the IR spectra were 
considered important across various analysis methods. 
This overlap potentially offers more reliable and con-
sistent feature information, facilitating accurate analy-
sis and identification of additives.

Moreover, the selected wavenumbers can be used 
to identify additives. As shown in Figure 3, significant 
differences were observed in the spectral comparison 
between tea adulterated with paraffin wax and pure tea 
in the ranges of 3000 to 2750 cm–1, 1750 to 1500 cm–1, 
and 1200 to 1000 cm–1. Notably, similar band varia-
tions were also observed in tea adulterated with talcum 
powder + paraffin wax + tea flavouring. These varia-
tions were primarily due to paraffin wax adulteration, 

Fig. 5. The wavenumbers selected by (a) SPA and (b) CARS
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which altered the chemical composition of the tea by 
introducing artificial additives, leading to an increase 
in fat content and changes in sugar content. Figure 6a 
presents the characteristic wavenumbers of tea and 
paraffin wax, selected through SPA analysis, and com-
pares them to the infrared spectrum of paraffin wax. 
These wavenumbers align with the distinctive ‘finger-
print’ of paraffin wax. Additionally, Figure 6 illustrates 
that the characteristic wavenumbers identified by SPA 
closely correspond to the major bands of the respec-
tive additives. The wavenumbers for tea with other 

additives, as identified by SPA, are provided in Fig. S1 
to S6 in the supplementary materials. These results in-
dicate that SPA is a reliable method for identifying the 
type of additive.

Model comparison
The six classification algorithms were tested us-
ing the optimal spectral preprocessing combination 
and selected features to generate the optimal model 
with the highest prediction accuracy, efficiency and 
generalisation ability. Table S3 in the supplementary 
materials presents the classification results and per-
formance of the algorithms on both full raw* spectra 
data and the data processed with SPA and CARS. The 
results demonstrated that SPA while improving accu-
racy by 0.017 to 0.106, significantly reduced process-
ing time by at least 97%. Similarly, CARS improved 
accuracy by 0.017 to 0.102, while decreasing pro-
cessing time by at least 91%. The SPA-RF achieved 
the highest accuracy of 0.962, while the SPA-DT 
model had the shortest processing time of 0.33 sec-
onds. In conclusion, SPA outperformed CARS in 
reducing processing time while maintaining high ac-
curacy, making it more suitable for large-scale sam-
ple detection.

To validate the model, 90 external tea samples 
were tested. The test dataset consisted of 10 spectra 
of pure tea and 80 spectra of adulterated tea (tea adul-
terated with white sugar, talcum powder, food colour-
ing, paraffin wax, tea flavouring, sulphur, white sugar 
+ paraffin wax and talcum powder + paraffin wax + 
tea flavouring). Table S4 in the supplementary materi-
als summarises the model performance on the test set. 
The confusion matrices, presented in Figure S7 of the 
supplementary materials, provide specific classifica-
tion results and detailed validation information. The 
ROC curves for the six classifiers are also presented in 
Figure S8 in the supplementary materials.

The results from the test set differ from those of 
the training set, as shown in Table S4. When ranked 
by accuracy on the test set, the order is SPA-KNN > 
SPA-SVC > SPA-AdaBoost > SPA-GNB > SPA-DT 
> SPA-RF. Most algorithms saw a decrease in accu-
racy, which could be attributed to potential differences 
in data quality and distribution between the training 
and test sets. Among these, SPA-KNN achieved the 
best overall result, with the highest accuracy of 0.956. 

Fig. 6. The wavenumbers selected by SPA: (a) tea + paraffin 
wax, (b) tea + talcum powder + paraffin wax + tea flavouring
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In the confusion matrix, SPA-KNN misclassified just 
one sample from the tea adulterated with sugar, two 
samples from the tea adulterated with food colouring, 
and one sample from the tea adulterated with talcum 
powder + paraffin wax + tea flavouring. Notably, these 
misclassifications occurred specifically in the positions 
where the respective single adulterants are presented 
in Fig. S7 in the supplementary materials. Additional-
ly, KNN demonstrated the largest area under the ROC 
curve compared to the other six algorithms, as shown 
in Fig. S8 in the supplementary materials.

In 2021, Yang et al. (Jun et al., 2021) integrated dif-
fuse reflectance MIR spectroscopy with chemometrics 
to rapidly discriminate adulterants in Radix Astragali, 
achieving a correct prediction rate of 100.0% using the 
KNN classification method. Both previous studies and 
the present one demonstrate that KNN, a nonparamet-
ric method based on the principle of locality, is par-
ticularly well-suited for classifying IR spectroscopy 
data with complex, unknown distributions and similar 
IR spectral features.

Common analytical methods include high-perfor-
mance liquid chromatography (HPLC) (Sun et al., 
2019), NMR spectroscopy (Maraschin et al., 2016), 
surface-enhanced Raman spectroscopy (Lin et al., 
2021), and IR spectroscopy. Compared to these meth-
ods, our work developed a more complex classifica-
tion model capable of distinguishing multiple types of 
additives and their combinations. We employed fea-
ture selection algorithms to enhance detection speed 
while maintaining satisfactory accuracy. The applica-
tion of SPA and CARS algorithms enabled us to ex-
tract valid information from spectra more rapidly than 
the combination of HPLC-diode array detection with 
second-order calibration based on alternating trilinear 
decomposition algorithm (2.07~8.10 min). In contrast 
to NMR spectroscopy combined with partial least 
squares-discriminant analysis and RF, which achieved 
high accuracy (>75%, reaching 90% in the best case), 
we used SPA with a KNN model, achieving an accu-
racy of 0.956. Our method significantly outperforms 
those reported in the literature, both in terms of speed 
and accuracy.

This research provides a cost-effective and rap-
id method for food regulatory agencies to monitor 
tea adulteration. However, practical applications of 
IR spectroscopy may be affected by environmental 

factors such as temperature and humidity, which can 
cause fluctuations in detection results. Additionally, 
the performance of the machine learning model is 
heavily dependent on the quality and quantity of the 
training data. Insufficient or unrepresentative data may 
result in recognition errors. It is also important to note 
that fraudulent practices in real-world scenarios can 
be even more complex, with techniques such as fu-
migation used to mask the true nature of the tea The 
effectiveness of our proposed method has not yet been 
validated in such situations.

Our method offers a sensitivity that can reach an 
adulterating concentration of 2%, is suitable for both 
single and multiple adulterating scenarios, and requires 
only 0.9 seconds for model operation. Therefore, it has 
significant potential for practical application, includ-
ing detecting the adulteration of meat with hydrocol-
loids (Qiu et al., 2024), identifying the practice of 
adulterating food with lower-quality ingredients (Gao 
et al., 2024c), determining adulterated food species 
(Liu et al., 2023) and tracing adulteration based on 
geographical origins (Xiao et al., 2024).

CONCLUSIONS

This study explored the combination of MIR spec-
troscopy, spectral preprocessing methods, and fea-
ture selection techniques for detecting additives in 
tea. The optimal spectral preprocessing combination, 
SNV&SD&SG, achieved a 0.960 discrimination 
rate on the training set. SPA, CARS, and the opti-
mal spectral preprocessing combination effectively 
improved algorithm accuracy and processing time. 
Among the classification models tested on the test 
set, the SPA-KNN model delivered the most com-
prehensive performance, with a prediction accuracy 
of 0.956, macro-precision of 0.964, macro-recall 
of 0.956, a macro-F1 score of 0.956, and a detec-
tion time of 0.9 seconds. Additionally, the selected 
features can assist in identifying the types of addi-
tives. These results suggest that MIR spectroscopy, 
when paired with machine learning, has the poten-
tial for differentiating tea adulterated with various  
additives.

Although the Chinese government has expressly 
prohibited the use of additives in tea, unscrupulous 
traders continue to engage in illegal practices for 
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financial gain. These additives pose serious risks to 
consumer health and significantly damage the reputa-
tion of tea products. The timely detection and preven-
tion of adulteration through reliable testing methods 
are critical to promoting standardisation and transpar-
ency across the tea industry, ensuring the authenticity 
and purity of tea. Future research on food adulteration 
should prioritise the integration of multispectral or hy-
perspectral imaging technologies, which offer richer 
spectral data and can enhance detection accuracy and 
sensitivity. Moreover, leveraging deep learning algo-
rithms, such as 1D convolutional neural networks, may 
outperform traditional machine learning techniques in 
classifying and identifying complex samples. To en-
hance the generalisation ability of detection models, 
future efforts should focus on developing a standard-
ised dataset encompassing various tea samples and 
their potential adulterants for robust model training 
and validation.
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SUPPLEMENTARY MATERIALS

1. AdaBoost
1.1 The code used to build the model
from sklearn.ensemble import AdaBoostClassifier
kfold = 
KFold(n_splits=10,shuffle=True,random_state=0)
clf = DecisionTreeClassifier(max_depth=4, min_sam-
ples_leaf=5, random_state=42)
ada_clf=AdaBoostClassifier(estimator=clf,learni
ng_rate=0.7000000000000001,n_estimators=10,
random_state=42)
ada_clf.fit(X, y)
score = cross_val_score(ada_clf, X, y, cv=kfold)
y_pred = ada_clf.predict(X_test)
score = ada_clf.score(X_test, y_test)

1.2 The main hyperparameters

The main hyperparameters were set: “learning_rate” 
as 0.7000000000000001, the “base_estimator” as 
DecisionTreeClassifier() and “n_estimators” as 10.

2. Support Vector Classification
2.1 The code used to build the model
from sklearn.svm import SVC
kfold = 
KFold(n_splits=10,shuffle=True,random_state=0)
param_grid = {‘C’:10}
clf = SVC(**param_grid,probability=True)
clf.fit(X, y)
score = cross_val_score(clf, X, y, cv=kfold)
y_pred = clf.predict(X_test)
score = clf.score(X_test, y_test)

2.2 The main hyperparameters
The main hyperparameters were set: kernel as ‘rbf’, 
“gamma” as “scale”, “C” as 10, “class_weight” as 
‘None’, and “decision_function_shape” as ‘ovr’.

3. Gaussian Naive Bayes
3.1 The code used to build the model
from sklearn.naive_bayes import GaussianNB
kfold = 
KFold(n_splits=10,shuffle=True,random_state=0)
clf=GaussianNB(var_smooth-
ing=0.0012328467394420659)
clf.fit(X, y)
score = cross_val_score(clf, X, y, cv=kfold)
y_pred = clf.predict(X_test)
score = clf.score(X_test, y_test)

3.2 The main hyperparameters
The main hyperparameters were set: “var_smooth-
ing” as 0.0012328467394420659.

4. K Neighbors Classifier
4.1 The code used to build the model
from sklearn.neighbors import KNeighborsClassifier
kfold = 
KFold(n_splits=10,shuffle=True,random_state=0)
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X, y)
score = cross_val_score(clf, X, y, cv=kfold)
y_pred = clf.predict(X_test)
score = clf.score(X_test, y_test)
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4.2 The main hyperparameters
The main hyperparameters were set: “n_neighbors” 
as 3.

5. Decision Tree
5.1 The code used to build the model
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
score = clf_score(y_test, y_pred)

5.2 The main hyperparameters
The main hyperparameters were set: “random_state” 
as 42.

6. Random Forest
6.1 The code used to build the model
from sklearn.ensemble import 
RandomForestClassifier
clf_classifier = RandomForestClassifier(n_estima-
tors=100, random_state=42)
X_train = [...]
y_train = [...]
clf_classifier.fit(X_train, y_train)
X_test = [...]
score = clf_classifier.predict(X_test)

6.2 The main hyperparameters
The main hyperparameters were set: “random_state” 
as 42.

Table S1. Evaluation metrics based on the multi-classification model 

Evaluation metrics Equation Definition

Accuracy

( )

n
ii

n
i i i ii

TP

TP TN FP TN+ + +
∑

∑

The ratio of correctly classified samples out of all samples

Precisioni i

i i

TP
TP FP+

The ratio of true positive samples to the total number of samples 
predicted as positive

Recalli i

i i

TP
TP FN+

The ratio of true positive samples to the total number of actual 
positive samples

F1i 2 i i

i i

precision recall
precision recall
× ×

+

Take into account both precision and recall

Macro-precision n
ii

precision
n

∑ The average of precision values for all categories

Macro-recall n
ii

recall
n

∑ The average of recall values for all categories

Macro-F1 1n
ii

F
n

∑ The average of F1 values for all categories
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Table S2. The discrimination results of the AdaBoost on the training set

Spectrum Spectral preprocessing methods Cross-validation score Processing time, s
Baseline correction
&
min-max 
normalization
(raw*)

SNV None None 0.929 79.37
None Savitzky-Golay 0.958 82.82
FD Savitzky-Golay 0.871 81.79
FD None 0.844 77.21
SD Savitzky-Golay 0.960 76.4
SD None 0.900 77.01

None None  None 0.904 56.48
None Savitzky-Golay 0.938 84.03
FD Savitzky-Golay 0.947 74.75
FD None 0.851 81.47
SD Savitzky-Golay 0.940 80.52
SD None 0.836 76.25

All raw spectra were processed by using baseline correction and normalization were defined as raw* spectra 
in this study.

Table S3. Comparison of different classification models on the training set (n = 540)

Classification 
models

Full spectra SPA proceed data CARS proceed data
Cross-

validation score
Processing

time, s
Cross-

validation score
Processing

times, s
Cross-

validation score
Processing

time, s
AdaBoost 0.902 56.87 0.929 0.90 0.960 4.83
KNN 0.918 38.13 0.956 0.78 0.951 2.65
SVC 0.916 48.75 0.933 0.65 0.931 2.71
GNB 0.776 27.26 0.882 0.37 0.878 1.48
RF 0.909 33.29 0.962 0.41 0.947 2.00
DT 0.907 41.54 0.956 0.33 0.933 2.84

Note: Full spectra data were based on the raw* spectra. SPA and CARS proceed data were based on the SNV&SD&SG pre-
processed spectral data.

Table S4. Comparison of the prediction results of different models on the test set (n = 90) 

Classification
models Accuracy Macro-

precision Macro-recall Macro-
F1

Processing
time, s

SPA-AdaBoost 0.867 0.886 0.867 0.854 1.57
SPA-KNN 0.956 0.964 0.956 0.956 0.90
SPA-SVC 0.944 0.954 0.944 0.944 0.80
SPA-GNB 0.789 0.837 0.789 0.787 0.38
SPA-RF 0.722 0.768 0.722 0.708 0.46
SPA-DT 0.767 0.805 0.767 0.753 0.46
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Fig. S1. The wavenumbers selected by SPA: tea + white 
sugar + paraffin wax

Fig. S2. The wavenumbers selected by SPA: tea + white 
sugar

Fig. S3. The wavenumbers selected by SPA: tea + talcum 
powder

Fig. S4. The wavenumbers selected by SPA: tea + sulphur
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Fig. S5. The wavenumbers selected by SPA: tea + food 
colouring

Fig. S6. The wavenumbers selected by SPA: tea + tea 
flavouring

Fig. S7. Confusion matrix of different models on the test set: (a) SPA-AdaBoost, (b) SPA-KNN, (c) SPA-SVC, (d) SPA-
GNB, (e) SPA-RF, (f) SPA-DT. Class 0 is pure tea, Class 1 ~ 8 are adulterated with white sugar, talcum powder, sulphur, 
paraffin wax, food colouring, tea flavouring, white sugar + paraffin wax and talcum powder + paraffin wax + tea flavouring
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